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Transition from anomalous to normal hysteresis in a system of coupled Brownian motors:
A mean-field approach
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We address a recently introduced model describing a system of periodically coupled nonlinear phase oscil-
lators submitted tomultiplicative white noises, wherein a ratchetlike transport mechanism arises through a
symmetry-breaking noise-induced nonequilibrium phase transition. Numerical simulations of this system re-
veal amazing novel features such asnegative zero-bias conductanceandanomalous hysteresis, explained by
performing a strong-coupling analysis in the thermodynamic limit. Using an explicit mean-field approximation,
we explore the whole ordered phase finding a transition from anomalous to normal hysteresis inside this phase,
estimating its locus, and identifying~within this scheme! a mechanism whereby it takes place.
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I. INTRODUCTION

Feynman’s ratchet-and-pawl example@1#, illustrating the
impossibility for a microscopic rectifying device to extra
work in a cyclic manner from theequilibriumfluctuations of
a singleheat bath, spurred in turn the search for heat eng
operating in afar from equilibriumregime betweentwo heat
baths. The field of ‘‘nanomechanics’’~more specifically, that
of noise-induced transport or ‘‘Brownian motors’’! is now
about one decade old@2#. In the early works, a requisite fo
these devices to operate~besides their obvious built-in, ratch
etlike bias! seemed to be that the fluctuations be correla
@3#. That requirement was relaxed when ‘‘pulsating’’ ratche
were discovered: in these it is the randomswitchingbetween
uncorrelated noise sources that is responsible of the rec
ing effect @4#.

A recent new twist has been to relax also the requirem
of a built-in bias@5#: a system of periodically coupled non
linear phase oscillators in a symmetric ‘‘pulsating’’ enviro
ment has been shown to undergo a noise-induced none
librium phase transition, wherein the spontaneous symm
breakdown of the stationary probability distribution giv
rise to aneffectiveratchetlike potential. The authors intro
duced the aforementioned mechanism and its striking co
quences, such as the appearance ofnegative zero-bias con
ductanceand anomalous hysteresis, which they illustrated
through numerical simulations and explained by using
strong-coupling limit. By anomalous hysteresis, we refer
the case in which the cycle runs clockwise, contrary to
normal one~as typified by a ferromagnet!, which runs coun-
terclockwise.

Exploiting our previous experience in a lattice model d
playing ~like the present one! a symmetry-breaking nonequ
librium phase transition@6# and in order to set a firm basi
for further work, we addressed the model using an expl
mean-field approach@7#, focusing on the relationship be
tween theshapeof the stationary probability distribution~as
well as thenumber of solutionsto the mean-field equations!
and the transport properties in its different regions. Henc
is our aim in this work to report on the thorough explorati
of the ordered phase, on the characterization of its su
1063-651X/2001/63~4!/041115~10!/$20.00 63 0411
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gions, and on features related to the transition from ano
lous to normal hysteresis in the behavior of the particle c
rent as a function of the bias force. Our main finding is th
there exists a close relationship between the character o
hysteresis loop on the one hand, and the shape of the sta
ary probability distribution as well as the number of ‘‘hom
geneous’’ solutions~a term to be clarified later! on the other.

In the following sections, we successively introduce t
model, describe the mean-field approach, discuss our
merical results, and draw our conclusions. For the benefi
the reader, we have included an Appendix in which some~in
our judgment! subtle calculations are performed in some d
tail.

II. THE MODEL

In Ref. @5#, the authors consider a set ofglobally coupled
stochastic equations of motion~in the overdamped regime
and to be interpreted in the sense of Stratonovich! for the N
degrees of freedom~phases! Xi(t):

Ẋi52
]Ui

]Xi
1A2Tj i~ t !2

1

N (
j 51

N

K~Xi2Xj !. ~1!

The model just set up can be visualized~at least for some
parameter values! as a set of overdamped interacting pe
dula. The second term models, as usual, the effect of ther
fluctuations:T is the temperature of the environment and t
j i(t) areadditiveGaussian white noises with zero mean a
variance 1,

^j i~ t !&50, ^j i~ t !j j~ t8!&5d i j d~ t2t8!. ~2!

The ‘‘pulsating’’ potentialsUi(x,t) are among the key
ingredients in the model@4# „xP@2L/2,L/2# is a phaselike
real variable that runs over the range ofXi(t), namely the
allowed values for any realization of anyXi at any timet….
They consist of a static partV(x) and a fluctuating one
Gaussian white noisesh i(t) with zero mean and variance
@i.e., obeying also Eq.~2! but assumednonthermalin origin#
©2001 The American Physical Society15-1
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are coupledmultiplicatively ~with intensity Q) through a
function W(x). Even though we adoptedL52p in all our
numerical calculations, we kept in all the equations the
pendence onL in order to have the most general expressio
For an analysis of the noise-induced ratchet effect, a ‘‘lo
force’’ F, producing an additional bias, is also included,

Ui~x,t !5V~x!1W~x!A2Qh i~ t !2Fx. ~3!

As already stated, bothV(x) and W(x) are assumed to b
periodic ~periodL) and moreover they aresymmetric:

V~2x!5V~x!, W~2x!5W~x!,

which means that there is nobuilt-in ratchet effect. In Ref.
@5#, the choice was

V~x!5W~x!52cosx2A cos 2x, ~4!

with A.0 so as to remove an accidental degeneracy hin
ing the spontaneous symmetry breakdown@5#, but not strong
enough to create a local minimum atL/25p. With the
choiceA.0, the direction of the particle current^Ẋ& turns
out to beoppositeto that of symmetry breaking in the sta
tionary probability distributionPst(x), and it is this effect
that leads in turn to such oddities asnegative zero-bias con
ductanceandanomalous hysteresis@5# ~a nice animation il-
lustrating this phenomenon can be found on the web@8#!.

The interaction forceK(x2y)52K(y2x) between os-
cillators ~the other key ingredient in the model! is also as-
sumed to be aperiodic function of x2y with the same pe-
riod L52p asV(x),W(x). In Ref. @5#, it is

K~x!5K0sinx, K0.0. ~5!

As indicated before, the model can be visualized~at least for
A→0) as a set of overdamped and interacting pendula~only
their phases matter, not their locations! interacting with one
another through a force proportional to the sine of th
phase difference~a force that is always attractive in the r
duced interval2p<x2y<p).

Summarizing, the complete set of parameters in the mo
is N, F, T, A, K0, andQ. Except for numerical simulations
the exact value ofN is unimportant, as long as it is large. A
already said,F is just an auxiliary tool for the analysis. W
shall fix the values ofT and A as in Ref. @5#, namely T
52, A50.15. So the important parameters in the model
K0 ~governing mostly the ‘‘drift’’ terms in this set of gener
alized Langevin equations! and Q ~governing mostly the
‘‘diffusion’’ ones!. As discussed in Ref.@4#, the Gaussian
character ofh i(t) allows it to be added toj i(t). Hence it
suffices to consider theh i(t)’s, now coupled throughS(x)
[A2@T1Q(W8)2#1/2 @note thatS(x)5A2g(x) as defined in
Ref. @5##.

III. MEAN-FIELD ANALYSIS

On account of the choice made in Eq.~4!, the interparticle
interaction term in Eq.~1! can be cast in the form
04111
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N (
j 51

N

K~Xi2Xj !5K0@Ci~ t !sinXi2Si~ t !cosXi #. ~6!

For N→`, we may approximate Eq.~1! in the manner of
Curie-Weiss, replacingCi(t)[N21( jcosxj(t) and Si(t)
[N21( jsinxj(t) by Cm[^cosxj& and Sm[^sinxj&, respec-
tively, to be determined as usual by self-consistency. T
decouples the system of stochastic differential equati
~SDE! in Eq. ~1!, which reduces to essentially one Marko
ian SDE for the single stochastic processX(t):

Ẋ5R~X!1S~X!h~ t !, ~7!

with

R~x!52V8~x!1F2Km~x!

52sinx~11K0Cm14A cosx!1K0Smcosx1F

~8!

„whereKm(x)5K0@Cmsinx2Smcosx#… and

S~x!5A2$T1Q@W8~x!#2%

5A2$T1Q@sinx12A sin 2x#2%, ~9!

so that the ‘‘spurious’’ contribution to the drift in the Stra
tonovich interpretation is

1

2
S~x!S8~x!5QW8~x!W9~x!5Q~sinx12A sin 2x!~cosx

14A cos 2x!. ~10!

We may writeR(x)52V8(x) in terms of aneffective@since
Cm and Sm are determined by self-consistency in terms
Pst(x) below# and moreover by the asymmetric~hence ratch-
etlike! potential

V~x!5V~x!1E
0

x

Km~y!dy2Fx

52@cosx~11K0Cm!1A cos 2x#2K0Smsinx2Fx.

Similarly, S(x)S8(x)/2 can be derived from
2Q@W8(x)#2/2.

A. The stationary probability distribution function

The Fokker-Planck equation associated with the SDE
Eq. ~7! is

] tP~x,t !5]x$2@R~x!1 1
2 S~x!S8~x!#P~x,t !%

1 1
2 ]xx@S2~x!P~x,t !# ~11!

@see the Appendix, Eqs.~A3! and ~A4!# and its normalized
stationary solutionwith periodic boundary conditionsand
current densityJÞ0 is @4,5#

Pst~x!5
e2f(x)H~x!

NS~x!
, ~12!
5-2
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where

f~x!522E
0

x

dy
R~y!

S2~y!
, ~13!

H~x!5E
x

x1L

dy
exp@f~y!#

S~y!
, ~14!

and N5*2L/2
L/2 dx Pst(x). The positive sign ofS(x) and the

exponentials implies that ofH(x) and hence that ofPst(x)
and N, as it should be. On the other hand, althoughR(x),
S(x), and Pst(x) are periodic by construction,f(x) is not
required to be so; in fact, it increases on each cycle by
amount

f~L !5
1

TE0

Ldx p~x!sinx

q~x!
2

K0Sm

T E
0

Ldx cosx

q~x!
2

F

TE0

L dx

q~x!
,

~15!

with p(x)511K0Cm14A cosx and q(x)51
1(Q/T)sin2x(114Acosx)2, both even functions ofx. Since
only the first term vanishes identically, for nonzeroF or Sm
it will be the casegenericallythatf(L)Þ0; thus the form of
H(x) in Eq. ~14! is designed to compensate for this fa
Moreover ~as shown in the Appendix! for A.0, @q(x)#21

(.0) gives less weight to the positive cosx values than to
the negative ones, and it does increasingly so the largerQ is;
hence the two nonzero contributions tof(L) compete with
each other.

According to Eq.~A15! in the Appendix,

J5@12ef(L)#/2N, ~16!

hence the sign ofJ is that of 12ef(L) and—on the other
hand—the ‘‘holonomy’’ conditionef(L)51 implies J50
and H(x)5const @see the Appendix, Eq.~A8!#. Equation
~16! is a self-consistency relation since bothN and f(L)
keep information on the shape ofPst(x) ~in the latter case
throughCm andSm). A nonzeroJ is always associated with
a symmetry breakdown inPst(x) @namely, Pst(2x)
ÞPst(x)]. This may be eitherspontaneous~our main con-
cern here! or inducedby a nonzeroF.

B. The self-consistency equations

As indicated earlier, the stationary probability distributio
Pst(x) depends on bothSm and Cm , since R(x) includes
Km(x). Their values arise from requiring self-consistenc
which amounts to solving the following system of nonline
integral equations:

Fcm5Cm with

Fcm[^cosx&5E
2L/2

L/2

dx cosxPst~x,Cm ,Sm!, ~17!

Fsm5Sm with
04111
n

.
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Fsm[^sinx&5E
2L/2

L/2

dx sinxPst~x,Cm ,Sm!. ~18!

These equations giveCm andSm for each set of the param
eters (Q, K0) that define the state of the system~assumingT,
A, andF fixed!.

For F50, the choiceSm50 makesR(x) in Eq. ~8! an odd
function of x; this in turn makesf(x) in Eq. ~13! even, and
then the periodicity ofPst(x) in Eq. ~12! @in the form Pst

(2x)5Pst(2x2L)] implies that the stationary probability
distribution is also an even function ofx. So the problem of
self-consistency reduces to thenumericalsearch of solutions
of Eq. ~17!, with Sm50. Nonetheless, a plausibility argu
ment leads to some intuition on the existence of some s
tions of this integral equation~and their stability! in this
symmetric case.

~i! Since—as argued—J50 and H(x)5const holds, it
turns out from Eq.~11! that the set of critical pointsxc of
Pst(x) must obeyR(xc)5 1

2 S(xc)S8(xc).
~ii ! Sincexc50,p(mod 2p) belong to that set, a possibl

way to satisfy the integral equation in Eq.~17! is for Pst(x)
to be concentrated around those values.

~iii ! Then, by analogy with a pendulum, one expects
solution with Cm.0 to be the stable one forK0 /Q large
enough~what we shall call an ‘‘interaction-driven regime
or IDR!. For K0 /Q small enough~‘‘noise-driven regime’’ or
NDR! the stable solutioncan have Cm,0 ~implying an
‘‘angle’’ larger thanp/2 with respect to the mean field! since
it corresponds to shaking the pendula violently.

Beyond these handwaving arguments, it must be said t
since cosx in Eq. ~17! is an even function ofx, in order to
determine the stability of the true solutions it suffices to u
the Curie-Weiss~i.e., the one-parameter! criterion, namely to
check whether the slope atSm of the integral in Eq.~18! is
less than or greater than 1. As a complementary chec
small-x expansion off(x) ~see the Appendix! confirms that
Pst(x) is indeed Gaussian atx50. For small FÞ0, Pst(x)
gets multiplied ~in this approximation! by exp@Fx/T#('1
1Fx/T), which leads to a nonzero value ofSm5kF with k
.0. By the mechanism discussed after Eq.~15!, for Q large
enough,f(L).0 and by Eq.~16!, J,0. As will be shown
later, this effect manifests itself in anegative zero-bias con
ductance.

We conclude that forF50 there are always one or mor
solutions to Eqs.~17! and~18! with Sm50 and one of these
is the stable one in the ‘‘disordered’’ phase. As argued
Ref. @5#, for N→` a noise-induced nonequilibrium transitio
takes placegenerically towards an ‘‘ordered’’ phase wher
Pst(2x)ÞPst(x). In the present scheme, this asymme
should be evidenced by the fact that the solution withSm
50 becomes unstable in favor of two other solutions su
that P2

st(x)5P1
st(2x), characterized bynonzero values

6uSmu. This fact confers uponSm the character of an orde
parameter.

C. The phase boundary

Since sinx is an antisymmetric function, Eq.~18! turns
out to be impractical for the task of finding the curve th
5-3
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separates the ordered phase from the disordered one, g
that on that curveSm is still zero. For that goal~exclusively!
we solve, instead of Eqs.~17! and ~18!, the following sys-
tem:

E
2L/2

L/2

dx cosxPst~x,Cm,0!5Cm , ~19!

E
2L/2

L/2

dx sinx
]Pst

]Sm

uSm5051. ~20!

D. The particle current

The appearance of a ratchet effect amounts to the e
tence of a nonvanishing drift term̂Ẋ& in the stationary state
in the absence of any forcing (F50); in other words, the
pendula become rotators in an average sense. As discu
above, the cause of this spontaneous particle current is
noise-induced asymmetry inPst(x) @5#.

As is shown in the Appendix,

^Ẋ&5E
2L/2

L/2

dxFR~x!1
1

2
S~x!S8~x!GPst~x,Cm ,Sm!,

~21!

and the final result is

^Ẋ&5JL5H 12ef(L)

2N J L. ~22!

Hence^Ẋ& has the sign ofJ and can be also regarded as
order parameter. In fact, from Eqs.~8! and~21!—or equiva-
lently from Eqs.~8!, ~13!, and ~22!—one may suspect th
existence of a close relationship between^Ẋ& andSm .

IV. NUMERICAL RESULTS

Figure 1 displays~on the same scale as Fig. 1b of Ref.@5#,
with which it fully coincides! the phase diagram obtained b
solving Eqs. ~19! and ~20! using the Newton-Raphso
method. In the region above the full line~‘‘ordered region’’!,
the stable solution to Eqs.~17! and ~18! hasSmÞ0. Notice
that this noise-induced phase transition isreentrant: as Q
increases forK05const, the ‘‘disordered phase’’ (Sm50) is
met again. The multiplicity of mean-field solutions in th
ordered region, together with the fact that some of them m
suddenly disappear as eitherK0 or Q are varied~a fact that,
as we shall see, is closely related to the occurrence of ano
lous hysteresis! hinders the pick of the right solution in thi
region.

A more systematic characterization of the aforementio
multiple solutions is achieved when the branch to which th
belong is followed from its corresponding ‘‘homogeneou
(Sm50) solution. Accordingly, the dashed line in Fig.
separates two sectors within the ordered region with reg
to the homogeneoussolutions. Below it~‘‘noise-driven re-
gime’’ or NDR! there isa singlesolution with Sm50 and
Cm,0 ~as already suggested, in this regime a solution w
Cm,0 canbe stable since it corresponds to shaking the p
04111
en

is-

sed
he

y

a-

d
y

rd

h
-

dula violently!. Above it ~‘‘interaction-driven regime’’ or
IDR! there arethree: two of them have opposite signs an
~for K0 /Q large enough! uCmu.0.9; the remaining one ha
Cm'0. Note that this line presents a dip, whose mean
will be discussed in relation to the character of the hystere
loop. We have studied the shape ofPst(x) and the behavior
of ^Ẋ& as a function ofF for different locations in this
(Q,K0) diagram. The squares in Fig. 1 indicate several
sitions inside and outside the ordered zone forK0510. For
this value, the separatrix between both regimes lies aro
Q56. Figure 2 illustrates the crossing of the dashed line
Fig. 1 and the persistence of the negative solution after
disappearance of the other two.

A. Analysis at constant coupling

Figure 3 shows~for the true solution, namely thestable
SmÞ0 one! the evolution ofPst(x) as a function ofQ, for

FIG. 1. Phase diagram of the model forT52, A50.15, andF
50. The ordered region lies above the full line. Above the das
line there may exist up to three solutions whenSmÞ0, whereas
below it there may exist at most one. The squares represent sta

which the shape ofPst(x) and the behavior of̂Ẋ& as a function of
F have been investigated. They correspond toK0510 andQ51, 3,
6, 9, 12, 16, and 21, respectively.

FIG. 2. Illustration of the passage from the IDR to the NDR,
the noise intensityQ increases forK0510 ~solid line: Q55.95;
dashed line:Q56.5). Only the solution withCm,0 survives after
the disappearance of the other two.
5-4



m
e

e
-

or

-

ase
s
n
n

d in
nti-
f the

e
o
.

f

e
-
be-

s

in
ion

y-

e

he

is

re-

nch
op;
r

se

a

r

TRANSITION FROM ANOMALOUS TO NORMAL . . . PHYSICAL REVIEW E 63 041115
K0510: whereas forQ51 and Q521 it is a symmetric
function ofx, there is a spontaneous breakdown of this sy
metry for the remaining values~the system has to choos
between two possibleasymmetricsolutions, of which just
one is shown!. A noticeable feature ofPst(x) is that for some
Q.6 it becomesbimodal ~in fact, already forQ56 we see
an indication that a second peak is developing!. According to
Fig. 3 and Eq.~17!, for Q,6 it may be expected that~for the
true solution! Cm will be positive and even relatively larg
@however, betweenQ52 andQ56 other solutions are pos
sible, which lead to other shapes ofPst(x) not shown#. As
the second peak develops and becomes higher than the
nal one,Cm shifts toward small negative values~in this re-
gion, the one depicted is the only possible solution!.

The squares in Fig. 4 plot~always forK0510) the two
possible values of the spontaneous drift velocity^Ẋ&uF50 in
the ordered phase as functions ofQ. The vertical thick line

FIG. 3. Pst(x) for K0510 and the values ofQ in Fig. 1. For
Q51 andQ521 ~solid line!, it is symmetric, being asymmetric fo
the remaining values~dashed lines!. For Q between 6 and 9, it
becomes bimodal and asQ increases, the peak with largeruxu over-
takes the other one, although it never reaches beyond 0.5.

FIG. 4. The order parameterVm5^Ẋ& ~particle current! as a
function of Q for K0510 and F50 ~squares!, 0.3 ~upward tri-
angles!, and 0.44~downward triangles!. The vertical thick line sig-
nals the transition from anomalous to normal hysteresis.
04111
-

igi-

indicates the value ofQ at which the transition from anoma
lous to normal hysteresis occurs forK0510. The effect of a

moderate positive biasF on ^Ẋ& in the normal region~at the
right of the thick line! is clearly understandable~the only
surprising feature is that on the reentrant branch of the ph
boundary, the transition forFÞ0 is so steep that it resemble
a first-order one!. But the most striking feature is the sudde
disappearance of a ‘‘forward’’ particle current for the show
values ofF as we cross the thick line towards the left~al-
though it may still exist for lower values ofF): this is a
manifestation of the anomalous hysteresis. As suggeste
the first paragraph of this section, this phenomenon is i
mately related to the sudden disappearance of some o
multiple solutions when eitherK0 or Q are varied in the IDR
~see Fig. 2!.

Figures 5~a!–5~d! present a sequence of^Ẋ& vs F plots,
varying Q across the thick line of Fig. 4. In these, all th
solutions to Eqs.~17! and ~18! except the one belonging t
the branch starting atCm'0 for Sm50 have been included
For Q55.97 @Fig. 5~a!#, two ~unstable! solutions meet at

^Ẋ&50 for F50. The progressive withdrawal of one o
them out of theF'0 region with increasingQ until its com-
plete disappearance@Figs. 5~b!–5~d!# can be traced back
~through their corresponding branches! to the disappearanc
of solutions forSm50. Moreover, it is only after this solu
tion has completely disappeared that the stable solution
gins to exist for larger values ofF and thus normal hysteresi
sets in@Fig. 5~d!#.

It is also instructive to see how the different branches
Figs. 5~a!–5~c! develop as one enters the ordered reg
from the left. Figure 6 shows for three points on theK0

510 line the^Ẋ& vs F plots for all the existing solutions~but
not the one belonging to the branch starting atCm'0 for
Sm50). For Q51, there is a single stable solution displa
ing negative zero-bias conductance; forQ51.7 ~right on the
phase boundary! a second~unstable! solution appears and th
anomalous hysteretic behavior~clearly seen forQ53) sets
in. As suggested by Fig. 4, the situation is different at t
reentry: Figure 7 shows that the disappearance of the~nor-
mal! hysteretic behavior at the phase boundary in the NDR
in fact abrupt, suggesting afirst-orderphase transition in this
regime.

B. Analysis at constant noise intensity

A complementary view of the transition in Figs. 5~a!–5~d!
is obtained by varyingK0 at Q56.0 @Figs. 8~a! and 8~b!#: for
K057.25, a very small normal hysteresis loop can be app
ciated, which has grown rather large already forK058.0; for
K0510.0, the loop has become anomalous and a third bra
has appeared, forming a cusp at the end points of the lo
for a largerK0 @Fig. 8~b!# the cusp develops into a curl. Fo
larger values ofQ ~always across the dashed line in Fig. 1!,
the general pattern is about the same~see Fig. 9 forQ59.5,
where the kink of the normal loop at a position rather clo
to the end point of the anomalous one is suggestive!; a simi-
lar plot to that in Fig. 2~but now varyingK0 at Q510.0) is
shown in Fig. 10, where the remaining solution displays
5-5
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FIG. 5. ~a! Vm5^Ẋ& vs F for K0510 andQ55.97~just on the left of the dashed line of Fig. 1!. The stable solutions are those with larg
Vm values; the other two solutions lie on the branches of theCm.0 andCm,0 ones forSm50 ~the solutions withCm'0 are not included!.
~b! Same as before forQ56.0: one of the unstable solutions has receded from theF'0 region~together with theCm'0 one, not shown!.
~c! Same as before forQ56.1, showing a complete recession from theF'0 region.~d! Same as before forQ56.5: not until the dotted line
has completely disappeared do solutions in the stable branch appear foruFu.0.5 and normal hysteresis sets in.
hy the

FIG. 6. Vm5^Ẋ& vs F for K0510 andQ51, 1.7, and 3, illus-

trating the appearance of multiple solutions and of anomalous
teresis as the ordered region is reached from the left.
04111
s-
FIG. 7. Vm5^Ẋ& vs F for K0510 andQ59, 12, 16, and 21,

illustrating the disappearance of the normal hysteresis loop at
reentrance~the disordered region is reached from the left!.
5-6
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larger value ofuCmu. Finally, it is interesting to elucidate th
nature of the transitionat the leftof the dip in the dashed line
in Fig. 1: as Fig. 11 shows, here the loss of two solutions
not accompanied by a change in the character of the hy
esis loop, which remains anomalous.

V. CONCLUSIONS

We have shown the existence of a sharp transition in
behavior of the system inside the ordered phase, from
‘‘interaction-driven regime’’ ~IDR! ~typically for K0 /Q
larger than about three halves! towards a ‘‘noise-driven re-
gime’’ ~NDR!, which differs from the former in several as
pects.

~a! Although ^Ẋ& shows hysteretic behavior as a functio
of F everywhere inside the ordered phase, in the IDR
character isanomalous~namely clockwise! whereas in the
NDR it is normal~counterclockwise!. Moreover, whereas the
height of the anomalous hysteresis loop increases con

FIG. 8. ~a! Vm5^Ẋ& vs F for Q56.0 andK057.25, 8.0, and
10.0, illustrating the way the transition from normal to anomalo
hysteresis proceeds asK0 increases atQ5const above the dip in
Fig. 1. ~b! Same as forK0514.0 and 18.0: the cusp at the en
points of the anomalous loop has developed into a curl, thus re
ing further its excursion.
04111
is
r-

e
n

s

u-

ously at the phase boundary in the IDR (^Ẋ& acts as an orde
parameter in asecond-order phase transition!, the disappear-
ance of the normal one proceeds by shrinking its width a
more or less finite height~the transition at the reentry is o
secondorder but it is so steep that it resembles afirst-order
one!.

~b! The shape of the stationary probability distributio
function ~PDF! changesqualitatively in going from the IDR
to the NDR~it becomesbimodaland remains so as the dis
ordered region is reentered and the PDF becomes symm
again, the peak atp then being higher than the one at 0!.

~c! Whereas in the IDR there areseveralsolutions with
Sm50 to the mean-field equations@Eqs. ~17! and ~18!#, in
the NDR there is auniquesolution withSm50. Solutions of
this kind are relevant as a safe starting guess for the New
Raphson solution of Eqs.~17! and~18! in the ordered phase
due to the fact that some solutions may suddenly disapp

Since the transition from anomalous to normal hystere
in going from the IDR to the NDR is preceded by the disa
pearance of a pair of solutions withSm50, the line in the
phase diagram at which these disappear~dashed line in Fig.

s

c-

FIG. 9. Vm5^Ẋ& vs F for Q59.5 andK0516.0~IDR! and 13.0
~NDR!. For K0513.0, there is still a remnant of the curl existing
the anomalous zone.

FIG. 10. Illustration of the passage from IDR to NDR, as t
coupling K0 decreases forQ510. As in Fig. 2, only the solution
with Cm,0 survives after the disappearance of the other two.
5-7
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1! provides an estimationof the place at which the forme
transition occurs. Of course, both phenomena are diffe
and so the disappearance of a pair of solutions withSm50
does not implyan anomalous-to-normal transition~recall
what happens at the left of the dip in the dashed line of F
1!.

Admittedly, all of our results aremean-fieldones. Al-
though this approximation shows undoubtedly its ability
reveal the richness of the phase diagram of this model,
reassuring to see that those of our results that are not orig
do coincide with the numerical simulations for the anom
lous hysteresis loop shown in Ref.@5#. Nonetheless, the ul
timate verification of these amazing and potentially use
phenomena lies with the experimentalists. We hope to
advances in that direction in the near future.
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APPENDIX

1. The stationary probability distribution function

We shall adopt as our standard reference the book
Risken @9#, whose equation~3.67! we have written in the
form of Eq. ~7!, with R(x) andS(x) defined in Eqs.~8! and
~9!. At variance with Risken’s choice~and in accord with
Ref. @5#! we have adoptedq51 in our Eq.~2!, equivalent to
its Eq. ~3.68!. Hence Eqs.~3.95! are translated into

D (1)~x!5R1
1

2
SS8, ~A1!

D (2)~x!5
1

2
S2. ~A2!

FIG. 11. Vm5^Ẋ& vs F for Q54.0 ~at the left of the dip in Fig.
1! andK059.0 ~IDR! and 8.2~NDR!. One of the branches of un
stable solutions has disappeared~together with theCm'0 one, not
shown!, but the hysteresis loop remains anomalous.
04111
nt

.

is
al
-
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ee

y

y

~the prime indicates a derivative with respect tox) where-
upon (D (2))85SS8.

The Fokker-Planck equation~4.46! can be written as

] tP~x,t !52]xJ~x,t ! ~A3!

with

J~x,t !5D (1)~x!P~x,t !2]x@D (2)~x!P~x,t !#

5S R1
1

2
SS8D P~x,t !2SS8P~x,t !2

1

2
S2]xP~x,t !

5RP~x,t !2
1

2
S]x@SP~x,t !#. ~A4!

On account of Eq.~A4!, the stationary case of Eq.~A3!
@namely] tP

st(x)50] impliesJ(x,t)5const5J, from which

@Pst~x!#852
2J

S2
1F2R

S2
2~ ln S!8GPst~x!. ~A5!

This equation has the form

y8~x!5a~x!1b~x!y~x!, ~A6!

and its general solution is

y~x!5expF E
0

x

b~x8!dx8G H E
0

x

dx9a~x9!

3expF2E
0

x9
b~x8!dx8G1KJ . ~A7!

As long asa(x)Þ0, the integration constantK can be cho-
sen so thaty(0)50. Otherwise~in our case forJ50) the
solution is

y~x!5K expF E
0

x

b~x8!dx8G . ~A8!

If a(x1L)5a(x) andb(x1L)5b(x), then

E
0

x1L

b~x8!dx85E
0

L

b~x8!dx81E
L

x1L

b~x8!dx8,

~A9!

E
0

x1L

dx9a~x9!expF2E
0

x9
b~x8!dx8G

5E
0

x

dx9a~x9!expF2E
0

x9
b~x8!dx8G

1E
x

x1L

dx9a~x9!expF2E
0

x9
b~x8!dx8G . ~A10!

The first term in Eq.~A9! is just a numberN and the second
equals*0

xb(x8)dx8 ~as can be seen by writingx85x91L).
Hence
5-8
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y~x1L !5eNH y~x!1expF E
0

x

b~x8!dx8G E
x

x1L

dx9a~x9!

3expF2E
0

x9
b~x8!dx8G J . ~A11!

By imposing the boundary conditiony(x1L)5y(x),

y~x!5
eN

12eN
expF E

0

x

b~x8!dx8G H E
x

x1L

dx9a~x9!

3expF2E
0

x9
b~x8!dx8G J . ~A12!

For our case it is a(x)522J/S2, b(x)5(2R/S2)
2(ln S)8, andy5Pst, from which by calling

f~x!522E
0

x R~x8!

S2~x8!
dx8, ~A13!

N52f(L) holds, and Eq.~A12! reads

Pst~x!52
2Je2f(L)

12e2f(L) H exp@2f~x!#

S~x!
E

x

x1L

dy
exp@f~y!#

S~y! J .

~A14!

J is fixed by normalization:

J5
12ef(L)

2E
2L/2

L/2

dx
exp@2f~x!#

S~x! H E
x

x1L

dy
exp@f~y!#

S~y! J
5

12ef(L)

2N . ~A15!

2. Contribution to f„L … of the interparticle interaction

For 0,A,1/4, W(x) in Eq. ~4! has a minimum height
2(11A) at x50 and a maximum height 12A at x56p.
The critical points of its derivative are shifted an amount
order A towards x50 from their A50 position of x
56p/2, and soS2(x) has its two maxima~of height 1
1Q/T) inside the cosx.0 region. Now@S(x)#22 has two
minima of height (11Q/T)21 in that region, whereas in th
cosx,0 one it remains of order 1.

3. Small-x expansion off„x…

To first order iny, Eqs. ~8! and ~10! readR(y)52y(1
1K0Cm14A)1K0Sm1F, S2(y)52T@11(Q/T)(1
14A)2y2#. Hence in this approximation
04111
f

Tf~x!5
T~114A1K0Cm!

2Q~114A!2
ln@11~Q/T!~114A!2x2#

2AT/Q
~K0Sm1F !

~114A!
arctan@xAQ/T~114A!#

;~114A1K0Cm!x2/22~K0Sm1F !x. ~A16!

AssumingK0Sm5F50, we may approximate

Pst~x!5
1

N
exp@2f~x!#

S~x!
;

1

A2TN 2

3expF2
~114A1K0Cm!x2

2T G
3F12

Q

2T
~114A!2x2G , ~A17!

which clearly has a maximum atx50. For smallF, the
maximum shifts toward (K0Sm1F)/(114A1K0Cm) and
that will in turn produce a small shift inSm from zero in the
direction that the maximum shifts~i.e., that ofF), the con-
sequence of which~by the argument in the preceding subse
tion! is a reversed current.

4. Calculation of the particle current

According to Eq.~3.85! of Ref. @9#,

D (1)~x,t !5 lim
t→0

1

t
^X~ t1t!2X~ t !&uX(t)5x5^Ẋ~ t !&uX(t)5x

~A18!

@in our case, sinceD (1)(x) does not depend explicitly on
time, this is the conditional average over realizations of
noise for anyt]. The unrestricted average at timet is then

^Ẋ~ t !&5E
2L/2

L/2

dx D(1)~x!P~x,t !

5E
2L/2

L/2

dxFR1
1

2
SS8GP~x,t !. ~A19!

From Eq.~A4!, it is

^Ẋ~ t !&5E
2L/2

L/2

dx J~x,t !1@D (2)~x!P~x,t !#2L/2
L/2 ,

~A20!

so for periodic P(x,t) it is

^Ẋ~ t !&5E
2L/2

L/2

dxJ~x,t ! ~A21!

and in the stationary state, whereJ(x,t)5const5J,

^Ẋ&5JL. ~A22!
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