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Transition from anomalous to normal hysteresis in a system of coupled Brownian motors:
A mean-field approach
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We address a recently introduced model describing a system of periodically coupled nonlinear phase oscil-
lators submitted tomultiplicative white noises, wherein a ratchetlike transport mechanism arises through a
symmetry-breaking noise-induced nonequilibrium phase transition. Numerical simulations of this system re-
veal amazing novel features suchregative zero-bias conductanaedanomalous hysteresiexplained by
performing a strong-coupling analysis in the thermodynamic limit. Using an explicit mean-field approximation,
we explore the whole ordered phase finding a transition from anomalous to normal hysteresis inside this phase,
estimating its locus, and identifyingvithin this schemga mechanism whereby it takes place.
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[. INTRODUCTION gions, and on features related to the transition from anoma-

Feynman’s ratchet-and-pawl exampld, illustrating the lous to normal hysteresis in the behavior of the particle cur-
impossibility for a microscopic rectifying device to extract rent as a function of the bias force. Our main finding is that
work in a cyclic manner from thequilibriumfluctuations of ~ there exists a close relationship between the character of the
asingleheat bath, spurred in turn the search for heat enginebysteresis loop on the one hand, and the shape of the station-
operating in &ar from equilibriumregime betweetwo heat  ary probability distribution as well as the number of “homo-
baths. The field of “nanomechanicgMmore specifically, that geneous” solutionga term to be clarified lat¢on the other.
of noise-induced transport or “Brownian motopsis now In the following sections, we successively introduce the
about one decade o[@]. In the early works, a requisite for model, describe the mean-field approach, discuss our nu-
these devices to operateesides their obvious built-in, ratch- merical results, and draw our conclusions. For the benefit of
etlike biag seemed to be that the fluctuations be correlatedhe reader, we have included an Appendix in which s¢ime
[3]. That requirement was relaxed when “pulsating” ratchetsour judgmenk subtle calculations are performed in some de-
were discovered: in these it is the randemitchingbetween  tail.
uncorrelated noise sources that is responsible of the rectify-

ing effect[4]. IIl. THE MODEL
A recent new twist has been to relax also the requirement )
of a built-in bias[5]: a system of periodically coupled non-  In Ref.[5], the authors consider a setgibbally coupled

linear phase oscillators in a symmetric “pulsating” environ- Stochastic equations of motidin the overdamped regime,
ment has been shown to undergo a noise-induced nonequid to be interpreted in the sense of Stratongviohthe N
librium phase transition, wherein the spontaneous symmetrjegrees of freedortphases X;(t):

breakdown of the stationary probability distribution gives
rise to aneffectiveratchetlike potential. The authors intro-
duced the aforementioned mechanism and its striking conse-
guences, such as the appearanceetfative zero-bias con-
ductanceand anomalous hysteresisvhich they illustrated The model just set up can be visualizét least for some
through numerical simulations and explained by using theparameter valugsas a set of overdamped interacting pen-
strong-coupling limit. By anomalous hysteresis, we refer todula. The second term models, as usual, the effect of thermal
the case in which the cycle runs clockwise, contrary to thefluctuations:T is the temperature of the environment and the
normal one(as typified by a ferromagngtwhich runs coun-  £(t) areadditive Gaussian white noises with zero mean and

.y, &7 1%
Xi== 5% \2TEML - 2 KOG-X). @)

terclockwise. variance 1,
Exploiting our previous experience in a lattice model dis-
playing (like the present onea symmetry-breaking nonequi- (&(1)=0, (&(D&(t'))=2a;6(t—t"). 2

librium phase transitiofi6] and in order to set a firm basis

for further work, we addressed the model using an explicit The “pulsating” potentialsU;(x,t) are among the key
mean-field approach7], focusing on the relationship be- ingredients in the modgW] (xe[—L/2,L/2] is a phaselike
tween theshapeof the stationary probability distributiofas  real variable that runs over the range X{t), namely the
well as thenumber of solutionso the mean-field equations allowed values for any realization of a; at any timet).
and the transport properties in its different regions. Hence ifThey consist of a static paiW(x) and a fluctuating one:
is our aim in this work to report on the thorough exploration Gaussian white noises;(t) with zero mean and variance 1
of the ordered phase, on the characterization of its subrdi.e., obeying also Eq2) but assumedionthermalin origin]
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are c_:oupledmultiplicatively (with intensity Q) t_hrough a 1
function W(x). Even though we adopteld=27 in all our N
numerical calculations, we kept in all the equations the de-
pendence ok in order to have the most general expressions or N—»o0, we may approximate Eq1) in the manner of
For an analysis of the noise-induced ratchet effect, a Hloacgurie-Wei,ss replacingC;(t)=N"1Scosx(t) and S(t)

" . . . . . ’ i - J ]
force” F, producing an additional bias, is also included, EN*EJ-sinxj(t) by Cm=(c0SX;) and S,=(sinx, respec-
tively, to be determined as usual by self-consistency. This
decouples the system of stochastic differential equations
(SDE) in Eq. (1), which reduces to essentially one Markov-

ian SDE for the single stochastic proce§&):

N
,2’1 K(Xi—X;)=Kq[ Ci(t)sinX;—Si(t)cosX;]. (6)

Ui(x,1)=V(x) + W(x)2Q7;(t) — Fx. (3)

As already stated, botki(x) and W(x) are assumed to be
periodic (periodL) and moreover they argymmetric

V(=) =V(0,  W(—X)=W(X) X=R(X)+S(X) (1), @
with
which means that there is rmilt-in ratchet effect. In Ref.
[5], the choice was R(Xx)=—=V'(X) +F—=Kp(x)
V(X)=W(X) = — cosx— A cos X, (4) = —sinx(1+KyCp,+4A cosx) +KyS,,cosx+F
(8

with A>0 so as to remove an accidental degeneracy hinder- .

ing the spontaneous symmetry breakdd&h but not strong ~ (WhereK,(x) = Kq[ Cyysinx—S§,cosx]) and

enough to create a local minimum &t2==. With the —
S(x) = V2{T+Q[W'(x)]%}

choice A>0, the direction of the particle curretX) turns

out to beoppositeto that of symmetry breaking in the sta- = \2{T+Q[sinx+ 2A sin 2x]?}, 9)

tionary probability distributionPSY(x), and it is this effect

that leads in turn to such oddities masgative zero-bias con- so that the “spurious” contribution to the drift in the Stra-

ductanceand anomalous hysteres|§] (a nice animation il- tonovich interpretation is

lustrating this phenomenon can be found on the y&jh
The interaction force&K(x—y)=—K(y—x) between os-

cillators (the other key ingredient in the mogles also as-

sumed to be geriodic function of x—y with the same pe-

riod L=27 asV(x),W(x). In Ref.[5], it is +4ACos X). (10

We may writeR(x) = — V' (x) in terms of aneffective[since
C,, and S, are determined by self-consistency in terms of
PSY(x) below] and moreover by the asymmettience ratch-
etlike) potential

%S(X)S’(X) =QW' (X)W’ (x)=Q(sinx+ 2A sin 2x)(cosx

K(x)=Kgsinx, Ky>0. (5)

As indicated before, the model can be visualizatleast for

A—0) as a set of overdamped and interacting pen¢uidy

their phases matter, not their locatipmsteracting with one X

another through a force proportional to the sine of their V(x)=V(x)+f Kn(y)dy—Fx

phase differencéa force that is always attractive in the re- 0

duced interval- m<x—y=). _ = —[cosx(1+KyCy,) + A cos ] — KoSysinx— Fx.
Summarizing, the complete set of parameters in the model

isN, F, T, A, Ko, andQ. Except for numerical simulations, Similarly, S(x)S'(x)/2 can be derived from

the exact value oN is unimportant, as long as it is large. As — Q[ W' (x)]%/2.

already saidF is just an auxiliary tool for the analysis. We

shall fix the values off and A as in Ref.[5], namely T A. The stationary probability distribution function

=2, A=0.15. So the important parameters in the model are . . _ :
K, (governing mostly the “drift” terms in this set of gener- The Fokker-Planck equation associated with the SDE in

alized Langevin equatiopsand Q (governing mostly the Eq.(7) is

“diffusion” ones). As discussed in Ref.4], the Gaussian o 41 /

character ofz;(t) allows it to be added t@;(t). Hence it AP =34 ~[RO)+2S0S () IP(x.D}
suffices to consider they;(t)’s, now coupled througs(x) + 20, SA(X)P(x,1)] 11
=2[ T+ Q(W')?]*2[note thatS(x) = \2g(x) as defined in

Ref. [[5]]_ (W] x) o(x) [see the Appendix, Eq$A3) and (A4)] and its normalized

stationary solutionwith periodic boundary conditionand
lIl. MEAN-FIELD ANALYSIS current densityd # 0 is [4,5]

On account of the choice made in E4), the interparticle PSi(x) = e *@H(x) (12)
interaction term in Eq(1) can be cast in the form NS(x)
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where
x R(y)
=-2]d , 13
$(x) fo Yy (13
x+L ex
and \'= ':’E,de PSY(x). The positive sign ofS(x) and the

exponentials implies that dfi(x) and hence that oPS(x)
and .V, as it should be. On the other hand, althowRyx),
S(x), and PSY(x) are periodic by constructionp(x) is not
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L/2

dxsinxPsY(x,C,,Sy)-
-2

Fsm=(sinx)= (18

These equations giv€,, and S, for each set of the param-
eters Q, Ky) that define the state of the systéassumingr,
A, andF fixed).

For F=0, the choiceS;,,=0 makeR(x) in Eg. (8) an odd
function of x; this in turn makess(x) in Eq. (13) even, and
then the periodicity ofPS'(x) in Eq. (12 [in the form PSt
(—x)=PSY{(—x—L)] implies that the stationary probability
distribution is also an even function &f So the problem of
self-consistency reduces to thamericalsearch of solutions
of Eqg. (17), with S,,=0. Nonetheless, a plausibility argu-

required to be so; in fact, it increases on each cycle by ament leads to some intuition on the existence of some solu-

amount
L)= 1dex p(x)sinx KgS,, [Ldxcosx FJL dx
PO=T a0 T Joaw Tlearo
(15
with p(x)=1+KyC,+4A cosx and g(x)=1

+(Q/T)sirtx(1+4Acosx)?, both even functions of. Since
only the first term vanishes identically, for nonzé¥wr S,
it will be the casegenericallythat ¢(L) +# 0; thus the form of
H(x) in Eq. (14) is designed to compensate for this fact.
Moreover (as shown in the AppendiXor A>0, [q(x)] *
(>0) gives less weight to the positive cosalues than to
the negative ones, and it does increasingly so the lapger
hence the two nonzero contributions ddL) compete with
each other.

According to Eq.(A15) in the Appendix,

J=[1-e’B]2N, (16)

hence the sign o8 is that of 1—e?") and—on the other
hand—the “holonomy” conditione?=1 implies J=0
and H(x) =const [see the Appendix, Eq(A8)]. Equation
(16) is a self-consistency relation since both and ¢(L)
keep information on the shape BFf'(x) (in the latter case
throughC,, andS,,). A nonzeroJ is always associated with
a symmetry breakdown inPS{(x) [namely, PS{(—x)
#+PSY(x)]. This may be eithespontaneougour main con-
cern herg or inducedby a nonzerd-.

B. The self-consistency equations

As indicated earlier, the stationary probability distribution
PS{(x) depends on botl$,, and C,,, since R(x) includes

tions of this integral equatioriand their stability in this
symmetric case.

(i) Since—as arguedd=0 and H(x)=const holds, it
turns out from Eq(11) that the set of critical pointg, of
PS{(x) must obeyR(x.)=3S(x.)S' (Xc)-

(i) Sincex.=0,7(mod 27) belong to that set, a possible
way to satisfy the integral equation in Ed.7) is for PSY(x)
to be concentrated around those values.

(i) Then, by analogy with a pendulum, one expects the
solution with C,,>0 to be the stable one fd{,/Q large
enough(what we shall call an “interaction-driven regime”
or IDR). ForK,/Q small enough(*‘noise-driven regime” or
NDR) the stable solutiorcan have C,,<0 (implying an
“angle” larger thans/2 with respect to the mean figldince
it corresponds to shaking the pendula violently.

Beyond these handwaving arguments, it must be said that,
since cox in Eg. (17) is an even function ok, in order to
determine the stability of the true solutions it suffices to use
the Curie-Weissi.e., the one-parametecriterion, namely to
check whether the slope &, of the integral in Eq(18) is
less than or greater than 1. As a complementary check, a
smallx expansion of(x) (see the Appendjxconfirms that
PSY(x) is indeed Gaussian at=0. Forsmall F#0, PSY(x)
gets multiplied (in this approximation by exgFx/T](~1
+Fx/T), which leads to a nonzero value 8f,=kF with k
>0. By the mechanism discussed after Eip), for Q large
enough,¢(L)>0 and by Eq.(16), J<0. As will be shown
later, this effect manifests itself inr@egative zero-bias con-
ductance

We conclude that foF =0 there are always one or more
solutions to Eqs(17) and(18) with S,,=0 and one of these
is the stable one in the “disordered” phase. As argued in
Ref.[5], for N— < a noise-induced nonequilibrium transition
takes placegenericallytowards an “ordered” phase where

Kn(X). Their values arise from requiring self-consistency, P'(—x) # P(x). In the present scheme, this asymmetry
which amounts to solving the following system of nonlinearshould be evidenced by the fact that the solution v8th

integral equations:

Fem=Cn Wwith

L/2

dx cosxP%(x,C,Sm),
—L/2

Fcm=(cosx)=

7

Fsm=Sm Wwith

=0 becomes unstable in favor of two other solutions such
that P5'(x)=P$(—x), characterized bynonzero values
+|S,|. This fact confers upoi®,, the character of an order
parameter.

C. The phase boundary

Since sirx is an antisymmetric function, Eq18) turns
out to be impractical for the task of finding the curve that
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separates the ordered phase from the disordered one, given 3o .
that on that curves,, is still zero. For that goalexclusively 1 P
we solve, instead of Eq$17) and (18), the following sys- 25 Pid

tem: 1

L/2
f dx cosxPS{(x,C,,,,00=C,,, (19
L

L2 opst
j dXSinX_|Sm70=1. (20)

—L2 ds,, ™

D. The particle current o 5 1w 15 20 2 30
The appearance of a ratchet effect amounts to the exis- Q

tence of a nonvanishing drift teriX) in the stationary state, FIG. 1. Phase diagram of the model fbr=2, A=0.15, andF
in the absence of any forcing=0); in other words, the —q. The ordered region lies above the full line. Above the dashed
pendula become rotators in an average sense. As disCUSS@@ there may exist up to three solutions wheg+0, whereas
above, the cause of this spontaneous particle current is th&low it there may exist at most one. The squares represent states at
noise-induced asymmetry i#*(x) [5]. which the shape oPSY(x) and the behavior ofX) as a function of

As is shown in the Appendix, F have been investigated. They correspon#e= 10 andQ=1, 3,
6, 9, 12, 16, and 21, respectively.

R(x) + ;S(X)S'(X)

. L/2
<X>:f_u2dx P(X,Crn, S, dula violently. Above it (“interaction-driven regime” or
(21) IDR) there arethree two of them have opposite signs and

(for Ko/Q large enough|C,,|=0.9; the remaining one has

and the final result is Cn~0. Note that this line presents a dip, whose meaning
50 will be discussed in relation to the character of the hysteresis

<X>=JL= { 1-e ]L 22) loop. We have studied the shapeR¥(x) and the behavior

2N of (X) as a function ofF for different locations in this

: ) (Q,Kp) diagram. The squares in Fig. 1 indicate several po-
Hence(X) has the sign ofl and can be also regarded as ansijtions inside and outside the ordered zoneKge= 10. For
order parameter. In fact, from Eq®) and(21)—or equiva-  thjs value, the separatrix between both regimes lies around
lently from Egs.(8), (13), and (22}—one may suspect the Q—g. Figure 2 illustrates the crossing of the dashed line in
existence of a close relationship betweet) andS;,,. Fig. 1 and the persistence of the negative solution after the

disappearance of the other two.

IV. NUMERICAL RESULTS
) ] ) A. Analysis at constant coupling
Figure 1 display$on the same scale as Fig. 1b of Ré&i,

with which it fully coincideg the phase diagram obtained by
solving Egs. (19) and (20) using the Newton-Raphson
method. In the region above the full liri¢ordered region”), 101
the stable solution to Eq$17) and (18) hasS,,#0. Notice
that this noise-induced phase transitionrégntrant as Q -
increases foK = const, the “disordered phase’'S(,=0) is 05 ~ -
met again. The multiplicity of mean-field solutions in the A
ordered region, together with the fact that some of them may ~
suddenly disappear as eith€p or Q are varied(a fact that, g 00
as we shall see, is closely related to the occurrence of anoma-t-
lous hysteresjshinders the pick of the right solution in this
region. 087 =
A more systematic characterization of the aforementioned | =
multiple solutions is achieved when the branch to which they
belong is followed from its corresponding “homogeneous” B o5 00 05 o
(Sy,=0) solution. Accordingly, the dashed line in Fig. 1 C
separates two sectors within the ordered region with regard
to the homogeneousolutions. Below it(*noise-driven re- FIG. 2. lllustration of the passage from the IDR to the NDR, as
gime” or NDR) there isa singlesolution with S;,=0 and  the noise intensityQ increases foiK,= 10 (solid line: Q=5.95;
Cm<0 (as already suggested, in this regime a solution wittdashed lineQ=6.5). Only the solution withlC,,<0 survives after
C»<0 canbe stable since it corresponds to shaking the penthe disappearance of the other two.

Figure 3 showgfor the true solution, namely thestable
Sn#0 one the evolution ofPS(x) as a function ofQ, for
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indicates the value d at which the transition from anoma-
lous to normal hysteresis occurs fdp=10. The effect of a

moderate positive biag on (X) in the normal regiorfat the

right of the thick ling is clearly understandabléhe only
surprising feature is that on the reentrant branch of the phase
boundary, the transition fdf +# 0 is so steep that it resembles

a first-order ong But the most striking feature is the sudden
disappearance of a “forward” particle current for the shown
values ofF as we cross the thick line towards the |édi-
though it may still exist for lower values d¥): this is a
manifestation of the anomalous hysteresis. As suggested in
the first paragraph of this section, this phenomenon is inti-
X mately related to the sudden disappearance of some of the

multiple solutions when eithd{, or Q are varied in the IDR
FIG. 3. PSY(x) for Ko,=10 and the values o in Fig. 1. For (see Fig. 2
Q=1 andQ=21(solid line), it is symmetric, being asymmetric for
the remaining valuegdashed lines For Q between 6 and 9, it
becomes bimodal and §sincreases, the peak with largedt over-
takes the other one, although it never reaches beyond 0.5.

Figures %a)—5(d) present a sequence @k) vs F plots,
varying Q across the thick line of Fig. 4. In these, all the
solutions to Egs(17) and (18) except the one belonging to
the branch starting a,,~0 for S,,=0 have been included.
For Q=5.97 [Fig. 5@)], two (unstable solutions meet at

Ko=10: whereas foQ=1 and Q=21 it is a symmetric (X)=0 for F=0. The progressive withdrawal of one of
function ofx, there is a spontaneous breakdown of this sym-

metry for the remaining valueéthe system has to choose them out of theF~0 region with increasin@ until its com-
between two possiblasymmetricsolutions, of which just plete disappearanckFigs. §b)-5(d)] can be traced back

. . Stron : (through their corresponding branchés the disappearance
OQm>eésitS Ezggr?egunifgggrﬁzgrZﬁZag’;)f'jréhitg‘;rvjo;gj qf solutions forsmzo.' Moreover, it is only after this splu-
an indication that a second peak, is developidgcording to tion has completely disappeared that the stable solution be-
. ! gins to exist for larger values &f and thus normal hysteresis
Fig. 3 and Eq(17), for Q<6 it may be expected théfor the sets in[Fig. 5d)]
true solution C,, will be positive and even relatively large . :

[however, betwee=2 andQ=6 other solutions are pos It is also instructive to see how the different branches in
: ; - N " Figs. 5a)-5(c) develop as one enters the ordered region
sible, which lead to other shapes BFY(x) not showr. As lgs. Ga)-8(c) develop g

the second peak develops and becomes higher than the origﬁ?m the left. Figure 6 shows for three points on tKg

nal one,C,, shifts toward small negative valugs this re- =10 line the(X) st plots for all the existing solutiondbut

gion, the one depicted is the only possible solution not the one belonging to the .branch startlng(};_qwo _for
The squares in Fig. 4 pldalways forK,=10) the two $m=0). Eoerl, t'here is a single stable solgtlon display-

possible values of the spontaneous drift velo¢ﬁ(y|F=O in ing negative zero-bias conductance; @ 1.7 (right on the

. . F=0 phase boundajya secondunstable solution appears and the
the ordered phase as functions@f The vertical thick line o 0 hysteretic behavitalearly seen forQ=3) sets

in. As suggested by Fig. 4, the situation is different at the

reentry: Figure 7 shows that the disappearance of(iiioe-
anomalous. | normal —a—F =0.00 mal) hysteretic behavior at the phase boundary in the NDR is
1 hysteresis | hysteresis _y—v—v —A—F=030 in fact abrupt, suggestingfast-order phase transition in this
2 v/'/}v:A/‘\A —v—F =044 regime.
v%‘}/.a\
14 A \ B. Analysis at constant noise intensity
e \ A complementary view of the transition in Figgap-5(d)
> ol ea . - is obtained by varying, at Q=6.0[Figs. §a) and 8b)]: for
- / Ko=7.25, a very small normal hysteresis loop can be appre-
&L‘X:{/I ciated, which has grown rather large alreadyKgr=8.0; for
] B Ky=10.0, the loop has become anomalous and a third branch
T has appeared, forming a cusp at the end points of the loop;
0 " : T s . for a largerK, [Fig. 8(b)] the cusp develops into a curl. For
Q larger values of) (always across the dashed line in Fig, 1

the general pattern is about the safsee Fig. 9 forQ=9.5,
FIG. 4. The order parameter,,=(X) (particle currentas a where the kink of the normal loop at a position rather close
function of Q for Ko=10 andF=0 (squares 0.3 (upward tri-  to the end point of the anomalous one is suggektaveimi-
angles, and 0.44(downward triangles The vertical thick line sig- lar plot to that in Fig. 2but now varyingK, at Q=10.0) is
nals the transition from anomalous to normal hysteresis. shown in Fig. 10, where the remaining solution displays a
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25- (a) 25- (c)
2A0-. 2.0
154 1.5

stable solution

1.0 / 1.04

0.5 0.5
IS 0.0—- £ 0.0
> -0.5 > -0.5
1.0 4 , -1.04
stable solution
154 -1.5]
2.0 2.0
2.5 T T T T T 2.5 T T T T T
1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 05 1.0
25- (b) 25 (d)
2.0 2.0
1.5 154
1.04 1.0
0.5 054
I 0.0 £ 0.0
> 0.5+ > 0.5
1.0 1.04
1.54 154
2.0 2.0
2.5 T T T T T 25 T T T T T
1.0 0.5 0.0 0.5 1.0 1.0 05 0.0 0.5 1.0

FIG. 5. (a) Vn=(X) vs F for Ko=10 andQ=5.97 (just on the left of the dashed line of Fig.. The stable solutions are those with larger
V|, values; the other two solutions lie on the branches ofdhe-0 andC,,<0 ones forS;,,=0 (the solutions withC,~0 are not included
(b) Same as before fd@=6.0: one of the unstable solutions has receded fronitk@® region(together with theC,~0 one, not shown
(c) Same as before fdp=6.1, showing a complete recession from Ere 0 region.(d) Same as before fd@=6.5: not until the dotted line
has completely disappeared do solutions in the stable branch appégf$d.5 and normal hysteresis sets in.

- --Q=30
cee-Q=17 —-=—-Q=9.00
s — 010 11----a=120
] —_—Q=16.0
/I'
0.10 / E RN
P 4 ] 7 \
0.05 P | Y /
s Lz 7
g 000 AT = ‘.""/’ €
> //_.__7' d >
005 [ tee--"T 7 s
\ PR ’
010 S 1 7
v
-0.154
1.5 1I0 OIS 0.0 0?5 1I0 1I5
F F
FIG. 6. Vm=(X> vs F for Ko=10 andQ=1, 1.7, and 3, illus- FIG. 7. Vm=(X) vs F for K,=10 andQ=9, 12, 16, and 21,
trating the appearance of multiple solutions and of anomalous hysHustrating the disappearance of the normal hysteresis loop at the
teresis as the ordered region is reached from the left. reentrancdthe disordered region is reached from the)left
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----K=10.0 o] —K=16.0 e
- = -K,=8.00 - —-K=13.0 ,
1.5 —K°=7.25
1.04
054
>E 0.0 1 L. -
-0.5
1.0
1.54
1
FIG. 9. V,=(X) vsF for Q=9.5 andK,=16.0(IDR) and 13.0
(NDR). ForKy=13.0, there is still a remnant of the curl existing in
b —K,=18.0 the anomalous zone.
(b) +se e K140
) ously at the phase boundary in the IDRX§ acts as an order
parameter in @aecondorder phase transitionthe disappear-
Lo ance of the normal one proceeds by shrinking its width at a
e L.t - more or less finite heightthe transition at the reentry is of
> PR / secondorder but it is so steep that it resemblefirat-order
0.0 i T T s one.
/ ------ (b) The shape of the stationary probability distribution
S function (PDF) changegqqualitativelyin going from the IDR
S to the NDR(it becomeshimodaland remains so as the dis-
ordered region is reentered and the PDF becomes symmetric
S again, the peak at then being higher than the one at 0
v T i T y T " ) (c) Whereas in the IDR there aseveralsolutions with

E S,=0 to the mean-field equation&gs. (17) and (18)], in
the NDR there is aniquesolution withS,,=0. Solutions of
FIG. 8. (@) V,,=(X) vs F for Q=6.0 andK,=7.25, 8.0, and this kind are relevant as a safe starting guess for the Newton-
10.0, illustrating the way the transition from normal to anomalousRaphson solution of Eq£17) a“‘?'(ls) in the ordered phase,
hysteresis proceeds #s, increases aQ=const above the dip in due .to the fact tha}t' some solutions may suddenly dlsappegr.
Fig. 1. (b) Same as foiK,=14.0 and 18.0: the cusp at the end Since the transition from anomalous to normal hysteresis
points of the anomalous loop has developed into a curl, thus redud going from the IDR to the NDR is preceded by the disap-
ing further its excursion. pearance of a pair of solutions with,,=0, the line in the
phase diagram at which these disappeshed line in Fig.
larger value of C,|. Finally, it is interesting to elucidate the
nature of the transitioat the leftof the dip in the dashed line 109
in Fig. 1: as Fig. 11 shows, here the loss of two solutions is
not accompanied by a change in the character of the hyster- ==

esis loop, which remains anomalous. 057 z~

V. CONCLUSIONS

g 0.0 7
We have shown the existence of a sharp transition in the
behavior of the system inside the ordered phase, from an p
“interaction-driven regime” (IDR) (typically for K,/Q 051 A
larger than about three halye®wards a ‘“noise-driven re- ] L=
gime” (NDR), which differs from the former in several as- =
peCtS' . ’ -1.0 -0.5 0.0 0.5 1.0
(a Although({X) shows hysteretic behavior as a function C
of F everywhere inside the ordered phase, in the IDR its
character isanomalous(namely clockwisg whereas in the FIG. 10. lllustration of the passage from IDR to NDR, as the
NDR it is normal(counterclockwise Moreover, whereas the coupling K, decreases fo©=10. As in Fig. 2, only the solution
height of the anomalous hysteresis loop increases continwith C,,<0 survives after the disappearance of the other two.
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o5 ——K=9.0 (the prime indicates a derivative with respectx{o where-
] - —-K=82 upon D)’ =SS,
04 The Fokker-Planck equatio@.46 can be written as
02 P(X,1) = —d,J(x,1) (A3)
with
3 0.04
= Ix,)=DO)P(x,t) — [ DP(X)P(x,1)]
-0.24
1 1
04 =| R+ ESS)P(x,t)—SSP(x,t)—ESZ&XP(x,t)
-0.6 T T T T T 1 1
1.5 -1.0 -0.5 0.0 05 1.0 1.5 =RP(x,t)— ES(?X[SP(X,t)]. (A4)
F

FIG. 11. V,,=(X) vs F for Q=4.0 (at the left of the dip in Fig. On accoungt of Eq.(A4), _the stationary case of EG{A_S)
1) andK,=9.0 (IDR) and 8.2(NDR). One of the branches of un- [namelyq;P*(x) =0] implies J(x,t) = const=J, from which

stable solutions has disappeaféabether with theC,,~0 one, not

i i 2) | 2R
shown), but the hysteresis loop remains anomalous. [PSt(X)]’z _ ? i ? —(Ins)’ PSt(X). (A5)

1) provides an estimationf the place at which the former
transition occurs. Of course, both phenomena are differenThis equation has the form
and so the disappearance of a pair of solutions Bjtk0

does not implyan anomalous-to-normal transitiomecall y' (X)=a(x)+ B(X)y(X), (AB)
what happens at the left of the dip in the dashed line of Fig.
1). and its general solution is
Admittedly, all of our results arenean-fieldones. Al- § .
though this approximation shows undoubtedly its ability to _ f "dx! f dx” a(x”
reveal the richness of the phase diagram of this model, it is y(x)=ex o’B(X ydx 0 X'a(X’)

reassuring to see that those of our results that are not original

do coincide with the numerical simulations for the anoma- Xex;{— fX”,B(x’)dx’
lous hysteresis loop shown in Réb]. Nonetheless, the ul- 0

timate verification of these amazing and potentially useful

phenomena lies with the experimentalists. We hope to sels long asa(x) # 0, the integration constait can be cho-

+K]. (A7)

advances in that direction in the near future. sen so that/(0)=0. Otherwise(in our case forJ=0) the
solution is
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x+L L x+L
APPENDIX fo 3(X')dx'=foﬁ(x’)dX’+fL B(x")dx’,

1. The stationary probability distribution function (A9)
We shall adopt as our standard reference the book by xtL X
Risken[9], whose equation3.67) we have written in the fo dx"a(x")ex —fo B(x")dx
form of Eq. (7), with R(x) andS(x) defined in Eqs(8) and
(9). At variance with Risken’s choicéand in accord with x o X
Ref.[5]) we have adopted=1 in our Eq.(2), equivalent to = Jo dx"a(x")ex —jo B(x")dx
its Eq. (3.68. Hence Eqs(3.99 are translated into
X+L X"
1 +J dx’a(x")ex —J x")dx’|. (A10
D®(x)=R+ ESS’ (A1) X «(x’) F{ 0 AX') (AL0)
The first term in Eq(A9) is just a numbeN and the second
1 X ’ ’ g —
D@(x)= =&, (A2) equalsfpB(x")dx" (as can be seen by writing =x"+L).
2 Hence

041115-8
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x+L
J dX"a(X”)
X

} . (A11)

y(x+L)= eN[ y(x)+ exr{ JXB(X’)dx’
0

X exr{ - JOX”,B(X’)dx’

By imposing the boundary conditionx+L)=y(x),
eN X x+L
Nexp{f B(x")dx’ {f dx"a(x")
—e 0 X
xex;{—fx B(x")dx’ ] (A12)
0

For our case it isa(x)=—2J/S?, B(X)=(2R/S?)
—(In9’, andy=PSt, from which by calling

y(x)= 1

R(x")
=-2 dx’, Al3
$(x) f Fo0, (A13)
N=—¢(L) holds, and Eq(A12) reads
st ~ 2060 fexd - ()] [xL | exd (y)]
=" 0| sw L YTsy |
(A14)
J is fixed by normalization:
1_e¢’(|—)
J=
L2 exd— ()] | [(xL exdé(y)]
2| o ) H Y8y ]
= (A15)

2. Contribution to ¢(L) of the interparticle interaction

For 0<A<1/4, W(x) in Eq. (4) has a minimum height

—(1+A) atx=0 and a maximum height1A at x=* .

The critical points of its derivative are shifted an amount of

order A towards x=0 from their A=0 position of x

=+7/2, and soS?(x) has its two maximaof height 1
+QIT) inside the cos>0 region. Now[S(x)] 2 has two
minima of height (2 Q/T) ! in that region, whereas in the

cosx<0 one it remains of order 1.

3. Smallx expansion of ¢p(x)
To first order iny, Egs.(8) and (10) readR(y)=—y(1
+KoCint+4A) +KoSy+F, SA(y)=2T[1+(Q/T)(1
+4A)%y?]. Hence in this approximation

PHYSICAL REVIEW E 63 041115

T(1+4A+K,Cpy)
2Q(1+4A)?

(KoSmt+F)
(1+4A)

IN[1+(Q/T)(1+4A)%x?]

To(x)=

—\T/Q arctafxyQ/T(1+4A)]

~(1+4A+KoCr)x22— (KoSm+ F)X. (A16)

AssumingK,S,,=F =0, we may approximate
1 ex X 1
iy = L S 900]
NSX) T 2TA?
(1+4A+KyCpp) X2
Xexpg — 5T

1—3(1+4A)2 2

(AL7)

which clearly has a maximum at=0. For smallF, the
maximum shifts toward K,S,,+F)/(1+4A+K,C,) and
that will in turn produce a small shift i, from zero in the
direction that the maximum shiftg.e., that ofF), the con-
sequence of whickby the argument in the preceding subsec-
tion) is a reversed current.

4. Calculation of the particle current
According to Eq.(3.85 of Ref.[9],

DM(x,t)= lim= <X(t+7) X()) | xty=x <X(t)>|x(t) X
07
(A18)
[in our case, sinc®™)(x) does not depend explicitly on

time, this is the conditional average over realizations of the
noise for anyt]. The unrestricted average at timhés then

. L2
(X(t))= Lmdx DD(x)P(x,t)

L2
= f dx
—L/2

From Eq.(A4), itis

P(x,1). (A19)

R 1SS
"2

L/2
(X(1))= f dx J(x,1) +[DP(x)P(x,1)]F ;.
(A20)
so for periodic P(x,t) it is
L/2
(X(1))= f dxJ(x,t) (A21)
and in the stationary state, wheléx,t) =const=J,
(Xy=JL. (A22)
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